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Abstract—In this paper, we propose a formal definition for
Linked-Data based verifiable credential to enable secure
selective disclosure among one or multiple verifiable creden-
tials a user has. Previous schemes considered using a single
verifiable credential and could not hide the user’s identifying
information when performing selective disclosure. We pro-
pose the first Linked-Data based verifiable credentials that
can perform selective disclosure free from the restrictions
the previous scheme had, and prove its property. We also
discuss a novel use of combining multiple certificates issued
by independent issuers to still allow users to perform selective
disclosure on the set of credentials. Our scheme has been
implemented as an open source Web-based application that
generates a verifiable presentation for a given selection of
attributes. The performance evaluation is also provided in
the paper.

Index Terms—anonymous credentials, verifiable credentials,
zero-knowledge proof

1. Introduction

Current identity management systems are centralised,
as there is a central authority who has all the attributes of
all the users. On the contrary, the design being discussed
at World Wide Web Consortium (W3C) based on Decen-
tralised IDentifier (DID) [39] and Verifiable Credentials
(VCs) [40] is gaining attention, as users are in charge of
storing their own attributes and can control which of their
attributes are to be presented to whom.

In a nutshell, the users are issued with verifiable
credentials, which certify the user’s set of attributes by
a digital signature of the issuer. A verifiable credential
can be issued not only to a natural person or legal entity
but also to any subject. The adoption of standardised data
structures for verifiable credentials has been seen in many
practical applications, such as COVID-19 vaccination cer-
tificates [18] and the IATA Travel Pass [23].

What is attractive in this design is that we can combine
anonymous credentials [11], [12], [15] and users can
present verifiable credentials in a selective way. That is,
the user can select a portion of the attributes and prove that
they are certified by the issuer, without disclosing further
information on the credentials, such as the signature or
other remaining set of attributes. This property is called
selective disclosure. For example, in vaccination creden-
tials, a local government might have issued a certificate
with a set of attributes, such as the name of the user and

the vaccination dates. The user can present the credential
in a way that discloses only the vaccination dates, but not
the name, and it can still be verified.

Typically, verifiable credentials are implemented using
JSON (JavaScript Object Notation) [8] and applying the
digital signature on JSON objects. An example is to
use JSON Web Signature (JWS) and JSON Web Token
(JWT) [38]. To achieve the selective disclosure property
using anonymous credentials, we need the messages to be
signed by a special digital signature scheme that is not
in the scope of JSON Web Signatures. Therefore, several
alternative designs or “flavours” of verifiable credentials
have been proposed [25], depending on the message struc-
ture and the digital signature scheme applied.

Among those different flavours of verifiable creden-
tials, there are some that use JSON-LD [26] to adopt
the concept of Linked Data [3]. By adopting JSON-LD,
we can interpret JSON objects according to the publicly
available JSON-LD context, which enhances the seman-
tic interoperability of verifiable credentials. However, the
current design that uses JSON-LD can offer a selective
disclosure property in a limited manner.

Contribution. In this paper, we propose the first verifiable
JSON-LD-based credentials that can perform selective
disclosure that are free from the restrictions of previous
schemes. We also propose a novel use of combining
multiple certificates issued by independent issuers, which
still allows users to perform selective disclosure on the
set of credentials. We further propose a formal definition
on the security and privacy of such selective disclosure
schemes and prove the property of the proposed scheme.
Our scheme has been implemented as open source and
provides a Web-based application that generates a veri-
fiable presentation for any given selection of attributes.
Performance evaluation is also provided in the paper.

We strongly believe in the potential of applying the
concept of Linked Data to verifiable credentials. For ex-
ample, as shown in Figure 1, user John Smith, identified
by the identifier A, has a verifiable credential issued by
the issuer I, which asserts that he works for the company
identified by an identifier B, such as the Legal Entity
Identifier (LEI) [24]. Furthermore, this company has a
verifiable credential issued by the issuer J that claims
that the company is named ABC Inc. and has received the
Top 100 award. John can combine these two credentials
and claim that he works for a company that received the
Top 100 award without disclosing his name, the name
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Figure 1. Example of Linked-Data based verifiable credentials

of the company, or any other identifiers included in the
credentials.

Note that credential 1, identified by the identifier I/1
in the figure, is classified as a bound credential because
the credential is bound to the user secret key and no one
can show the credential without such secret key. On the
contrary, credential 2, identified by the identifier J/2, is
called an unbound credential because there are no user
secret keys bound to the credential and anyone can use
it as a public signed document. This is an interesting
example of combining bound and unbound credentials to
augment attribute presentations of the user. By collecting
public unbound credentials from governments, companies,
etc., and linking them to private bound credentials, users
can attest to various attributes of themselves which could
not have been done with bound credentials alone, as well
as claims that include the attributes of others. To our
knowledge, this type of selective disclosure use case has
not been discussed in previous work, and this would open
up new possibilities for verifiable credentials.

We note that Fig. 1 exemplifies a graph where the
arrows are labelled with informal properties such as
issuer and name for simplicity, while in practice we
can use standardised properties such as https://www.w3.
org/2018/credentials#issuer from [40] and de facto stan-
dard ones such as http://schema.org/name from [36] to
enhance semantic interoperability among distinct issuers.

Related work. The BBS+ signature is an extension of the
Boneh, Boyen and Shacham (BBS) group signature [5] for
anonymous credentials. It is capable of signing sequences
of messages and has the features of generating signatures
while hiding some messages and efficiently constructing
discrete-logarithm-based zero-knowledge proofs for each
message. It uses bilinear pairings, and security is shown
under the q-SDH (Strong Diffie-Hellman) assumption.
Signatures with similar characteristics exist, such as the
Pointcheval-Sanders (PS) signature [34] and the Sanders
redactable signature [35], but their security is reduced to
a less general assumption than the q-SDH assumption.

Most conventional anonymous credentials treat at-
tributes as simple sequences or sets of values. For exam-
ple, [4], [10]–[12], [35] deals with a sequence of attribute
values (m�)�, and [20] represents attribute values as a set
{m�}�. For more complex data structures, anonymous cre-

dentials based on graph signatures are discussed in [21],
[33], [42]. When encoding a graph in the input of a
digital signature, Nakanishi et al. [33] use a pairing-based
accumulator to achieve proof sizes and verification times
that do not depend on the number of points or edges
in the graph. However, it is not obvious how to convert
Linked Data, the subject of this paper, into general graph
information handled by these graph signatures or how to
selectively link graphs signed by multiple issuers.

Related standardisation efforts. There are three stan-
dardisation efforts at W3C related to our work. The first
is Verifiable Credentials Data Model specification [40],
which describes a core data model, concepts and syntaxes
of verifiable credentials. The specification is maintained
by the Verifiable Credentials Working Group. It does not
standardise on any single proof mechanism, but instead
refers to the second specification effort, Data Integrity.

The specification of Data Integrity [30], which was
formerly called Linked Data Proofs, is currently pub-
lished as a Draft Community Group Report by the W3C
Credentials Community Group. It provides specifications
to ensure the authenticity and integrity of Linked Data
documents, including Linked-Data based verifiable cre-
dentials. Data Integrity specification only provides high-
level algorithms. Hence, we additionally require a specific
canonicalisation algorithm, message digest algorithm, and
proof algorithm to be used to obtain the intended result.
These are considered in the third effort, LDP-BBS+ spec-
ification.

The LDP-BBS+ specification [31] is also a Draft Com-
munity Group Report by the W3C Credentials Community
Group. It defines specific algorithms to create, verify and
derive proofs for BBS+ Signatures [1], [9], [12] with the
Data Integrity specification. The construction proposed in
our work extends LDP-BBS+ to overcome its limitation
and realise the aforementioned use case. While our work
has not yet been on any standardisation roadmap, we had
some discussions with the editors of the specifications.
Our work can be regarded as a candidate for an additional
suite in conformance with Data Integrity.

Furthermore, we believe that this work can also be in-
tegrated into OpenID Connect for Self-Sovereign Identity
specifications [28], [43], [44] discussed in the OpenID
Foundation and the Decentralized Identity Foundation
(DIF), as well as DIDcomm [16] discussed in DIF.

As for other ongoing standardisation activities related
to anonymous credentials, Privacy Pass protocol [17] en-
ables a user to obtain a blindly signed anonymous token
from an issuer. The issuer issues anonymous tokens when
the user passed some test, for example, CAPTCHAs, and
the verifier uses the token for authorisation. This protocol
is currently being standardised by the Internet Engineer-
ing Task Force (IETF) as Internet-Draft of Privacy Pass
Issuance Protocol [13], using the blind RSA signature
scheme [14] in publicly verifiable anonymous tokens. In
contrast to our work, the scheme intends a different use
case where the token is used once, and not multi-use as
in our case. It is also unclear if other attributes of the
user need to be verified besides passing a test, nor if the
property of selective disclosure will be in need.
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2. Preliminaries

2.1. Notation

For a ≤ b ∈ Z, [a, b] denotes the set
{x ∈ Z : a ≤ x ≤ b}. We write [1, n] as [n]. If I ∈
Z, denote the sequence (x1, . . . , xI) by (xi)i∈[I]
or (xi)

I
i=1, and (xi,1, . . . , xi,J )i∈[I] to denote the

sequence ((x1,1, . . . , x1,J ), . . . , (xI,1, . . . , xI,J )). Proba-
bilistic Polynomial Time is abbreviated as PPT. Let a←
f(x) or f(x) → a denote that the PPT algorithm f with
x as input is executed and the output is a. We write
〈a, b〉 ← 〈f(x), g(y)〉 or 〈f(x), g(y)〉 → 〈a, b〉 to indicate
that the PPT algorithms f and g run interactively with
x and y as input, respectively, and their outputs are a
and b. We write a ← f(x, y, . . . ; Ooracle1 ,Ooracle2 , . . .) to
indicate the operation of a PPT algorithm f with inputs
x, y, . . . and access to oracles Ooracle1 ,Ooracle2 , . . . and let
a be the output. We omit the system parameter prm that
is entered into the algorithm if it is clear from the context.

2.2. Verifiable Credentials

A verifiable credential is a set of attributes of a subject
digitally signed by an issuer. For example, a verifiable
credential could serve as a vaccination certificate for a user
that is signed by the authority, e.g. a local government,
that includes a set of attributes like user’s name, address,
date of birth, vaccination status together with dates of
vaccinations and the names of each vaccine manufacturer.

The World Wide Web Consortium (W3C), in its Ver-
ifiable Credentials Working Group, defines the ecosys-
tem of Verifiable Credentials consisting of the following
roles [40]: issuer, subject, holder, verifier, and verified data
registry, as depicted in Fig. 2.

The issuer issues a verifiable credential containing a
set of claims on a Subject, and transfers it to a Holder, who
is typically the subject themselves. The holder stores the
verifiable credential received, and storage is often called
an identity wallet. For simplicity, we use the term “User”
to represent both a holder and a subject.

In response to a request from the verifier, the holder
retrieves one or more stored verifiable credentials from
the identity wallet, extracts only the necessary attributes,
and presents them to the verifier in a data set called
a verifiable presentation. The verifier uses the issuer’s
public key to verify that the credentials contained in the
verifiable presentation are indeed those of the issuer. In
this process, the issuer’s identifier and public key are
exchanged through a verifiable data registry.

For the implementation of verifiable credentials, sev-
eral methods have been proposed, including those that
enhance user privacy by applying anonymous credentials
and those that have features as Linked Data that facilitate
linking between multiple data and assigning clear mean-
ings to data.

The verifiable credential is based on the work of
the anonymous credential [11], [12], [15] and privacy-
enhancing attribute-based credential [10], providing a pri-
vacy enhancement mechanism that uses zero-knowledge
proofs in addition to digital signatures. For example, it
can be used to show that a person is qualified to drive a

�

�

�

�
�

Figure 2. The roles and information flows related to verifiable credentials.

regular car while hiding their name and address or to show
that a person is over 20 years old without revealing their
date of birth. In addition, the unlinkability of the credential
is considered so that the user’s actions cannot be tracked
between issuers, verifiers, or even between issuers and
verifiers.

Verifiable credentials can be represented as JSON-
LD [26] document, which has the aspect of Linked Data,
linking data to data to form a “web of data” 1. The
verifiable credential described as JSON-LD enables scal-
able and interoperable data definition and also facilitates
linking among multiple verifiable credentials.

The LDP-BBS+ [31] scheme has been proposed as a
scheme that takes advantage of the features of anonymous
credentials and Linked Data. This scheme applies the
BBS+ signature [1], [9], [12] to verifiable credentials
based on JSON-LD to allow selective disclosure of at-
tributes. In recent years, the community has been working
on standard specifications and test implementations of this
method, as it requires less preparation than conventional
methods, has a simple structure, and is easy to imple-
ment. However, there are some limitations in the scope
of anonymisation and zero-knowledge proofs other than
selective disclosure cannot be handled. In addition, there
is a lack of features to take advantage of the characteris-
tics of Linked Data, such as confidentiality of identifiers
contained in credentials and selective disclosure of links
between multiple credentials.

2.3. Anonymous Credentials

In this paper, we basically follow the (game-based
security) definition of multi-use2 anonymous credential
(AC) from [35] with slight modifications. We modify the
definitions to enable simultaneous presentations of multi-
ple credentials and for proofs of equivalence of attributes,
as in the simulation-based security definitions of privacy-
enhancing attribute-based credential system [10]. Contrary
to the previous definitions based on interactive proofs, our
definitions are based on non-interactive proofs to suit for
applications in concrete data exchange protocols such as
OpenID Connect and DIDComm.

Definition 1. An anonymous credential system AC con-
sists of the following PPT algorithms:

1. W3C Specification [40] also includes JWT-based verifiable creden-
tials as well as those based on JSON-LD.

2. We require our ACs to support multiple unlinkable showing of
credentials, rather than single-use showing such as U-Prove based on
Brand’s signature scheme [7] and anonymous credentials light [2].
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prmGen(1λ, L)→ prm: Given a security parameter 1λ

and an upper bound L for the number of attributes,
it outputs public parameters prm.

ikGen(prm)→ (isk, ipk): Given public parameters prm, it
outputs an issuer’s secret key isk and public key ipk.

sign(isk, (m�)�)→ σ: Given an issuer secret key isk and
attribute values (m�)� to be signed, it outputs a signa-
ture σ.
A tuple (ipk, (m�)�, σ, b = 0) consisting of a public
key ipk corresponding to isk, attribute values (m�)�, a
signature σ, and an unbound indicator b = 0 is called
unbound credential.

sigVf(ipk, (m�)�, σ)→ b: Given an issuer’s public key
ipk, attribute values (m�)�, and a signature σ, it outputs
1 (accept) or 0 (reject).

uskGen(prm)→ usk: It takes prm as input and outputs a
user’s secret key usk.

〈obtain(usk, ipk, (m�)�), issue(isk, (m�)�)〉 → 〈σ,�〉: It
is an interactive protocol run by a user and an issuer,
where the user runs obtain with its secret key usk,
the issuer’s public key ipk, and attribute values (m�)�
to be signed, whereas the issuer runs issue with its
secret key isk and (m�)�. If the protocol is successful,
the user gets the signature σ and the issuer gets �.
Otherwise, both parties get ⊥.
We name the issued (ipk, (m�)�, σ, b = 1) as bound
credential.

show(usk, (ipki, (mi,�)�, σi,Di, bi)i, E ,m)→ π: Given
one or more pairs of credentials (ipki, (mi,�)�, σi, bi)
and reveal indices Di, a user’s secret key usk, indices
E to specify the target of the equivalence proof, and
nonce m ∈ {0, 1}∗, it outputs a proof π.
Di, is an index to specify the (m′i,�)� to be presented
to the verifier from the entire attribute value (mi,�)�.
E = {E1, E2, . . .} is the set of E ⊆ [I] × [L], which
instructs us to prove that (i, �), (i′, �′) ∈ EE then
mi,� = mi,�′ without hiding the actual value. Here,
(i, �) ∈ E ∈ E implies � /∈ Di.
If there exists a pair (i, �), (i′, �′) ∈ E ∈ E such that
mi,� �= mi′,�′ , the algorithm show outputs ⊥ since in
this case E contains inappropriate indices.

verify((ipki, (m
′
i,�)�, bi)i, E ,m, π)→ b: Given more than

one triple of an issuer’s public key ipki, revealed at-
tribute values (m′i,�)�, and an indicator bi of bound /
unbound, as well as indices E to specify the target of
equivalence proof, nonce m ∈ {0, 1}∗, and the proof π,
it outputs 1 (accept) or 0 (reject).
When � ∈ Di (subject to disclosure), m′i,� = mi,�, and
when � /∈ Di (subject not to disclosure), m′i,� = ⊥
using the non-disclosure symbol ⊥ /∈M.

Correctness requires that if all I credentials with at
most L attributes each are correctly issued to a user by
K honest issuers, then any presentation, with selective
disclosure and proof of equivalence indicated by Di and
E , correctly computed by the user from those credentials
will be accepted by the verifier. The formal definition is
as follows.

Definition 2 (correctness). We define the game
ExpcorrAC as in Fig. 3. If it always holds that
ExpcorrAC (λ, I,K,L, (ki, Li, (mi,�)

Li

�=1,Di, bi)i∈[I], E ,m) =
1 for any λ ∈ N, I ≥ 1, K ≥ 1, L ≥ 1, ki ∈ [K] (i ∈ [I]),

ExpcorrAC (λ, I,K,L, (ki, Li, (mi,�)
Li
�=1,Di, bi)i∈[I], E ,m)

1: prm← prmGen(1λ, L); usk← uskGen(prm)

2: for k ∈ [K] : (iskk, ipkk)← ikGen(prm)

3: for i ∈ [I] :

4: if bi : 〈σi, b1,i〉
← 〈obtain(usk, ipkki

, (mi,�)�), issue(iskki
, (mi,�)�)〉

5: else : σi ← sign(iskki
, (mi,�)�); b1,i ← sigVf(ipkki

, (mi,�)�, σi)

6: for mi,� ∈ (mi,�)� :

7: if � ∈ Di : m
′
i,� ← mi,� else : m

′
i,� ← ⊥

8: π ← show(usk, (ipkki
, (mi,�)�, σi,Di, bi)i∈[I], E,m)

9: b2 ← verify((ipki, (m
′
i,�)�, bi)i∈[I], E,m, π)

10: return b1,1 ∧ · · · ∧ b1,I ∧ b2

Figure 3. Correctness game for anonymous credentials

Li ≤ L, (mi,�)
Li

�=1 ⊆ MLi , Di ⊆ [Li], bi ∈ {0, 1}, E
such that mi,� = mi,�′ holds for any (i, �), (i′, �′) ∈ E
for all E ∈ E , m ∈ {0, 1}∗, we say that AC is correct.

The security notions of an anonymous credential here
are not novel; they are slightly modified versions of the
definitions in [35]. The differences between ours and [35]
are that we adopt a static corruption model for the brevity
of the analysis, we add oracles to model the issuance of
unbound credentials, and we allow users and adversaries
to present multiple credentials at the same time.

Fig. 4 shows the definitions of oracles to be used in the
security definitions of anonymous credentials. The Oobtiss

is an oracle that allows an honest issuer and an honest user
u to issue and obtain a signature σ for attribute values
(m�)�. Signature σ is assigned an identifier cid and is
recorded in CREDu (a wallet of credentials issued to the
user u) with the public key ipk∗ of the issuer, the attribute
value (m�)�, and a bound/unbound flag b. Oiss is an oracle
that causes an honest issuer to issue a bound signature
associated with the adversary for the attribute values
(m�)�. Osign is an oracle that causes an honest issuer to
issue an unbound signature for the attribute values (m�)�.
Oobt and Oobt′ are oracles that allow an honest user u
to obtain bound and unbound signatures, respectively. As
in Oobtiss, the signature and other information is recorded
in CREDu, which is associated with the user u. Oshow is
an oracle that causes an honest user u to present their
credentials. It specifies one or more credentials issued
to u by Oobtiss, Oobt and Oobt′ by the identifier cidi,
and performs selective disclosure based on reveal indices
Di and proof of equivalence based on the equivalence
index E using the nonce m. Information on the disclosed
credentials is recorded in PRES with the nonce.

We define the unforgeability of anonymous credentials
as follows.

Definition 3 (Unforgeability). We say that AC is un-
forgeable if Pr

[
ExpufAC(λ,L,A) = 1

]
is negligible for any

λ ∈ N, L ≥ 1 and adversary of the PPT A, where ExpufAC
is defined in Fig. 5.

With an unforgeable anonymous credential, for a
honest issuer with (isk∗, ipk∗) and a group of honest
users with ((usk∗u)u∈[U ]), the adversary cannot make a
forgery ((ipki, (m�)�∈Di

,Di, bi)i∈[I∗], E∗,m∗, π∗) that is
accepted by the verifier (b∗1). Here, the forgery must be
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Oobtiss(u, (m�)�, b)

1: if b : 〈σ, ·〉 ← 〈obtain(usk∗u, ipk∗, (m�)�), issue(isk
∗
, (m�)�)〉

2: else : σ ← sign(isk∗, (m�)�)

3: if σ = ⊥ : return ⊥
4: cid←$ {0, 1}∗; CREDu[cid]← (ipk∗, (m�)�, σ, b)

5: return cid

Oiss((m�)�)

1: 〈·, b〉 ← 〈A, issue(isk∗, (m�)�)〉
2: if b 
= ⊥ :

3: ATTR← ATTR ∪ {(m�)�}

Osign((m�)�)

1: σ ← sign(isk∗, (m�)�)

2: ATTR← ATTR ∪ {(m�)�}
3: return σ

Oobt(u, cid, ipk, (m�)�)

1: 〈σ, ·〉 ←
〈obtain(usk∗u, ipk, (m�)�),A〉

2: if σ = ⊥ : return ⊥
3: CREDu[cid]← (ipk, (m�)�, σ, 1)

Oobt′(u, cid, ipk, (m�)�, σ)

1: if sigVf(ipk, (m�)�, σ) = 0 :

2: return ⊥
3: CREDu[cid]

← (ipk, (m�)�, σ, 0)

Oshow(u, (cidi,Di)i∈[I], E ,m)

1: for i ∈ [I] :

2: (ipki, (mi,�)�, σi, bi)← CREDu[cidi]

3: for mi,� ∈ (mi,�)� :

4: if � ∈ Di : m
′
i,� ← mi,� else : m

′
i,� ← ⊥

5: if ∃(i, �), (i′, �′) ∈ E ∈ E. [m(i,�) 
= m(i′,�′)] : return ⊥
6: if ∃(i, �) ∈ E ∈ E. [� ∈ Di] : return ⊥
7: π ← show(usk∗u, (ipki, (mi,�)�, σi,Di, bi)i∈[I], E,m)

8: if π = ⊥ : return ⊥
9: PRES← PRES ∪ {((ipki, (m′

i,�)�, bi)i∈[I], E,m)}
10: return π

Figure 4. Oracles to be used in the security definitions of anonymous
credentials

nontrivial, that is, the forgery must not have been cre-
ated by a Oshow oracle (b∗2), and must contain at least
one credential issued by an honest issuer (b∗3). Further-
more, forgeries based on those honest credentials must
not be derivable from the credentials obtained by the
adversary via the Oiss or Osign oracles (b∗4). We say that
(m′�)� ⊆ (m�)� if m′� �= ⊥ ⇒ m′� = m� is valid for all �.

We define the anonymity of anonymous credentials as
follows:

Definition 4 (Anonymity). We say that AC is anonymous
if Pr[ExpanAC(λ,L,A) = 1] is negligible for any λ ∈ N,
L ≥ 1 and PPT adversary A, where ExpanAC is defined in
Fig. 5.

The above definition means that any PPT adversary
cannot extract any knowledge from the proof π∗ that helps
identify who presents π∗ and which credentials are used
to construct π∗, except to the extent that it is trivially
identified from the revealed attributes and the issuers’
public keys.

For example, we can construct an anonymous creden-
tial scheme with the above notions of unforgeability and
anonymity, based on BBS + signatures [1], [9], [12] with
the Fiat-Shamir heuristic [19], which is proven secure
under the q-SDH assumption in the random oracle model.

3. Linked-Data based Verifiable Credentials

3.1. RDF Graph

In this paper, we follow [26] and refer to a set of
documents, each containing a representation of an RDF

ExpufAC(λ,L,A)

1: prm← prmGen(1λ, L); (isk∗, ipk∗)← ikGen(prm)

2: for u ∈ [U ] : usk∗u ← uskGen(prm)

3: ((ipki, (m
′
i,�)�, bi)i∈[I∗], E∗,m∗

, π
∗
)

← A(prm, ipk∗;Oobtiss,Oiss,Osign,Oobt,Oobt′ ,Oshow)

4: b
∗
1 ← verify((ipki, (m

′
i,�)�, bi)i∈[I∗], E∗,m∗

, π
∗
)

5: b
∗
2 ← [((ipki, (m

′
i,�)�, bi)i∈[I∗], E∗,m∗

) /∈ PRES]

6: b
∗
3 ← [ipk∗ ∈ {ipki}i∈[I∗]]; b

∗
4 ← 


7: for i
∗ ∈ {i ∈ [I

∗
] : ipki = ipk∗} :

8: b
∗
4 ← b

∗
4 ∧ [∀(m�)� ∈ ATTR. (m′

i∗,�)� 
⊆ (m�)�]

9: return b
∗
1 ∧ b

∗
2 ∧ b

∗
3 ∧ b

∗
4

ExpanAC(λ,L,A)

1: b←$ {0, 1}; prm← prmGen(1λ, L)

2: for u ∈ [U ] : usk∗u ← uskGen(prm)

3: ((u
∗
0 , cid

∗
0,i,D∗

0,i)i∈[I∗], (u
∗
1 , cid

∗
1,i,D∗

1,i)i∈[I∗], E∗,m∗
)

← A(prm;Oobt,Oobt′ ,Oshow)

4: for i ∈ [I
∗
] :

5: (ipk∗0,i, (m
∗
0,i,�)�, σ

∗
0,i, b

∗
0,i)← CREDu∗

0
[cid∗0,i]

6: (ipk∗1,i, (m
∗
1,i,�)�, σ

∗
1,i, b

∗
1,i)← CREDu∗

1
[cid∗1,i]

7: if (ipk∗0,i, (m
∗
0,i,�)�∈D∗

0,i
, b∗0,i)i∈[I∗]


= (ipk∗1,i, (m
∗
1,i,�)�∈D∗

1,i
, b∗1,i)i∈[I∗] : return 0

8: π
∗ ← show(usk∗u∗

b
, (ipk∗b,i, (m

∗
b,i,�)�, σ

∗
b,i,D∗

b,i, b
∗
b,i)i∈[I∗], E∗,m∗

)

9: if π
∗
= ⊥ : return 0

10: b
∗ ← A(π

∗
;Oobt,Oobt′ ,Oshow); return (b

∗
= b)

Figure 5. Unforgeability and anonymity of anonymous credentials

graph [37] as Linked Data. Note that verifiable credentials
based on JSON-LD can be uniquely deserialised to RDF
graphs according to the standardised algorithm [27]. An
RDF graph is a representation of a labelled directed graph
as a set of triples. Specifically, for a message set M, the
set of three terms called subject, predicate, and object
(s, p, o) ∈M3 is called an RDF triple, and the set of RDF
triples G ⊂ M3 is called an RDF graph. For simplicity,
we assume that each term is an element ofM and ignore
the difference between IRIs and literals, and we do not
deal with blank nodes.

The two credentials shown in Figure 1 are examples of
RDF graphs. For example, credential 1 can be represented
as the RDF graph G1 shown below.

G1 = {(si, pi, oi) : 1 ≤ i ≤ 4}, where

(s1, p1, o1) = (I/1, issuer, I)),

(s2, p2, o2) = (I/1, credentialSubject, A),

(s3, p3, o3) = (A, name, John Smith),

(s4, p4, o4) = (A, worksFor, B)

Hereinafter, we refer to RDF graphs and RDF triples
simply as graphs and triples if it does not cause misun-
derstanding.

We use a canonicalisation algorithm canon, a de-
terministic algorithm that converts a graph G =
{(sj , pj , oj)}j∈J , an unordered set of triples, into the

ordered set �G = (sj , pj , oj)j∈[|G|]. Since we assumed
that the RDF graphs in this paper do not contain blank
nodes, canonicalisation is trivially possible. For example,
serialising each element s, p, o ∈ M by any appropriate
serialisation rule and sorting them in lexicographic order is
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sufficient.3 For the above example of G1, its canonicalised
form is obtained as follows:

canon(G1) = ((A, name, John Smith),

(A, worksFor, B),

(I/1, credentialSubject, A),

(I/1, issuer, I))

3.2. Reveal Function

Our verifiable credentials based on Linked Data allow
users to selectively disclose their RDF graphs. Specif-
ically, we introduce the following reveal function ϕ to
express the operation of deriving a partially hidden graph
G′ from an RDF graph G as G′ = ϕ(G).

Let ϕ be a function that assigns the RDF triple
(s, p, o) ∈ M3 to the empty set ∅ or (s′, p′, o′) with
zero or more terms replaced by mask X ∈ X , where
s′ ∈ {s} ∪ X , p′ ∈ {p} ∪ X , o′ ∈ {o} ∪ X . Here,
X = {X1, X2, . . .} is a set of masks that is used to
hide the labels of the vertices and arcs on the graph,
which satisfies X ∩M = ∅. If the same mask appears in
several places in the revealed graph G′, this means that the
attribute values are originally equal and their equivalence
is later shown by the user in a zero-knowledge proof.

We say that G′ � G if for any (s′, p′, o′) ∈ G′ there
exists some (s, p, o) ∈ G such that s′ ∈ {s} ∪ X , p′ ∈
{p} ∪ X , and o′ ∈ {o} ∪ X hold.

A reveal function is called incorrect if it attempts
to show the equivalence of non-equivalent values. More
strictly, for a given ϕi, ϕi′ ∈ (ϕi)i, for any tj ∈ M and
xj ∈ M ∪ X (1 ≤ j ≤ 6) such that ϕi((t1, t2, t3)) =
(x1, x2, x3) and ϕi′((t4, t5, t6)) = (x4, x5, x6), if both
tj �= tj′ and xj = xj′ hold for some 1 ≤ j, j′ ≤ 6, then
we say that (ϕi)i is an incorrect set of reveal functions.

For example, for credential 1 in Figure 1, the following
reveal function ϕ1 specifies that the vertices I/1 and A
are to be masked by X1 and X2, respectively, and that
the arc name with value John Smith will be deleted.

ϕ1((I/1, issuer, I)) := (X1, issuer, I),

ϕ1((I/1, credentialSubject, A))

:= (X1, credentialSubject, X2),

ϕ1((A, name, John Smith)) := ∅,
ϕ1((A, worksFor, B)) := (X2, worksFor, B)

For an RDF graph G, we denote the set
{ϕ((s, p, o))}(s,p,o)∈G by ϕ(G). For a sequence
�G = (si, pi, oi)i of RDF triples, we denote the sequence
(ϕ((si, pi, oi))i = (ϕ((s1, p1, o1)), ϕ((s2, p2, o2)), . . .) as

ϕ(�G).

3.3. Syntax

Definition 5. A Linked-Data based verifiable credential
system LDVC consists of the following PPT algorithms:
prmGen(1λ, L)→ prm: Given a security parameter 1λ

and an upper bound L for the number of arcs in a graph,
it outputs public parameters prm.

3. For canonicalisation of RDF graphs with blank nodes, there exist
several proposed methods including [29] and [22].

ikGen(prm)→ (isk, ipk): Given public parameters prm, it
outputs an issuer’s secret key isk and public key ipk.

sign(isk, G)→ σ: Given an issuer secret key isk and a
graph G to be signed, it outputs a signature σ.
A tuple (ipk, G, σ, b = 0) consisting of a public key
ipk corresponding to isk, a graph G, a signature σ,
and an unbound indicator b = 0 is called an unbound
credential.

sigVf(ipk, G, σ)→ b: Given an issuer’s public key ipk, a
graph G, and a signature σ, it outputs 1 (accept) or 0
(reject).

uskGen(prm)→ usk: It takes prm as input and outputs a
user’s secret key usk.

〈obtain(usk, ipk, G), issue(isk, G)〉 → 〈σ,�〉: It is an in-
teractive protocol run by a user and an issuer, where
the user runs obtain with its secret key usk, the issuer’s
public key ipk and a graph G to be signed, while the
issuer runs issue with its secret key isk and G. If the
protocol is successful, the user gets the signature σ and
the issuer gets �. Otherwise, both parties get ⊥.
We name the issued (ipk, G, σ, b = 1) as bound cre-
dential.

show(usk, (ipki, Gi, σi, ϕi, bi)i,m)→ π: Given one or
more pairs of credentials (ipki, Gi, σi, bi) and reveal
functions ϕi, a user’s secret key usk, and nonce m ∈
{0, 1}∗, it outputs a proof π for the derived graphs
(ϕi(Gi))i.
It outputs ⊥ if (ϕi)i is an incorrect set of reveal
functions.

verify((ipki, G
′
i, bi)i,m, π)→ b: Given more than one

triple of an issuer’s public key ipki, a derived graph
G′i, and an indicator bi of bound / unbound, as well as
nonce m ∈ {0, 1}∗ and the proof π, it outputs 1 (accept)
or 0 (reject).

Since the correctness of LDVC is almost the same
as the correctness of an anonymous credential, the exact
definition is omitted.

3.4. Security

We define the unforgeability and anonymity of LDVC
based on the corresponding notions of anonymous cre-
dentials by replacing a sequence (m�)� of attributes in an
anonymous credential with an RDF graph G.

With the oracle definitions in Fig. 6, the unforgeability
and anonymity of LDVC are defined as follows:

Definition 6 (Unforgeability). We say that LDVC is un-
forgeable if Pr

[
ExpufLDVC(λ,L,A) = 1

]
is negligible for

any λ ∈ N, L ≥ 1, and PPT adversary A, where ExpufLDVC
is defined in Fig. 7.

Definition 7 (Anonymity and weak anonymity). We
say that LDVC is anonymous and weakly anonymous if
Pr[ExpanLDVC(λ,L,A) = 1] and Pr[ExpwanLDVC(λ,L,A) = 1]
are negligible for any λ ∈ N, L ≥ 1 and PPT adversary A,
where the experiments are defined in Fig. 7, respectively.

Although the unforgeability and anonymity of LDVC
are obtained as straightforward extensions of the anony-
mous credential, we additionally define the notion of
weak anonymity for LDVC. Informally speaking, (full)
anonymity ensures that no PPT adversary can identify the
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Oobtiss(u,G, b)

1: if b : 〈σ, ·〉 ← 〈obtain(usk∗u, ipk∗, G), issue(isk∗, G)〉
2: else : σ ← sign(isk∗, G)

3: if σ = ⊥ : return ⊥
4: cid←$ {0, 1}∗; CREDu[cid]← (ipk∗, G, σ, b)

5: return cid

Oiss(G)

1: 〈·, b〉 ← 〈A, issue(isk∗, G)〉
2: if b 
= ⊥ :

3: ATTR← ATTR ∪ {G}

Osign(G)

1: σ ← sign(isk∗, G)

2: ATTR← ATTR ∪ {G}
3: return σ

Oobt(u, cid, ipk, G)

1: 〈σ, ·〉 ←
〈obtain(usk∗u, ipk, G),A〉

2: if σ = ⊥ : return ⊥
3: CREDu[cid]← (ipk, G, σ, 1)

Oobt′(u, cid, ipk, G, σ)

1: if sigVf(ipk, G, σ) = 0 :

2: return ⊥
3: CREDu[cid]

← (ipk, G, σ, 0)

Oshow(u, (cidi, ϕi)i∈[I],m)

1: if (ϕi)i∈[I] is incorrect : return ⊥
2: for i ∈ [I] :

3: (ipki, Gi, σi, bi)← CREDu[cidi]; G
′
i ← ϕi(Gi)

4: π ← show(usk∗u, (ipki, Gi, σi, ϕi, bi)i∈[I],m)

5: if π = ⊥ : return ⊥
6: PRES← PRES ∪ {((ipki, G′

i, bi)i∈[I],m)}
7: return π

Figure 6. Oracles to be used in the security definitions of LDVC

user presenting the proof π∗ or learn anything about the
user, except to the extent that it is trivially learnt from the
revealed graphs and the issuers’ public keys required to
verify the proof. Regarding weak anonymity, we further
extend this ”trivially learnt” information; an adversary in
the weak anonymity setting is able to additionally learn
the sizes and canonicalised forms of the graphs at the time
of issuance as well as the revealed graphs and the issuers’
public keys.

4. Construction of Linked-Data based Verifi-
able Credential

4.1. Construction

Now we construct our LDVC from an anonymous
credential system. Our construction can be seen as an
extension of the LDP-BBS+ scheme [31]. The original
LDP-BBS + scheme uses the Universal RDF Dataset
Canonicalisation Algorithm 2015 (URDNA2015) [29] to
convert an RDF graph into a canonicalised (ordered) list
of RDF triples, and then generates and verifies a BBS+
signature taking each RDF triple as input attribute. As
a result, zero-knowledge proofs in the scheme can only
be performed for each triple, so that selective disclosure,
range proofs, and any other ZKPs for individual values
(i.e., ID, name, date of birth, etc.) cannot be realised.

However, in our construction, RDF triples are further
decomposed into RDF terms, that is, subject, predicate,
and object, which are regarded as attributes for generating
and verifying signatures. This enables zero-knowledge
proofs, such as selective disclosure, range proofs, and
proof of equivalent attributes for individual values rather
than triples. In particular, using the proof of equality, we

ExpufLDVC(λ,L,A)

1: prm← prmGen(1λ, L); (isk∗, ipk∗)← ikGen(prm)

2: for u ∈ [U ] : usk∗u ← uskGen(prm)

3: ((ipki, G
′
i, bi)i∈[I∗],m

∗
, π

∗
)

← A(prm, ipk∗;Oobtiss,Oiss,Osign,Oshow)

4: b
∗
1 ← verify((ipki, G

′
i, bi)i∈[I∗],m

∗
, π

∗
)

5: b
∗
2 ← [((ipki, G

′
i, bi)i∈[I∗],m

∗
) /∈ PRES]

6: b
∗
3 ← [ipk∗ ∈ {ipki}i∈[I∗]]; b

∗
4 ← 


7: for i
∗ ∈ {i ∈ [I

∗
] : ipki = ipk∗} :

8: b
∗
4 ← b

∗
4 ∧ [∀G ∈ ATTR. G′

i∗ 
� G]

9: return b
∗
1 ∧ b

∗
2 ∧ b

∗
3 ∧ b

∗
4

ExpanLDVC(λ,L,A) ExpwanLDVC(λ,L,A)

1: b←$ {0, 1}; prm← prmGen(1λ, L)

2: for u ∈ [U ] : usk∗u ← uskGen(prm)

3: ((u
∗
0 , cid

∗
0,i, ϕ

∗
0,i)i∈[I∗], (u

∗
1 , cid

∗
1,i, ϕ

∗
1,i)i∈[I∗],m

∗
)

← A(prm;Oobt,Oobt′ ,Oshow)

4: for i ∈ [I
∗
] :

5: (ipk∗0,i, G
∗
0,i, σ

∗
0,i, b

∗
0,i)← CREDu∗

0
[cid∗0,i]

6: (ipk∗1,i, G
∗
1,i, σ

∗
1,i, b

∗
1,i)← CREDu∗

1
[cid∗1,i]

7: if (ipk∗0,i, ϕ
∗
0,i(G

∗
0,i), b

∗
0,i)i∈[I∗]


= (ipk∗1,i, ϕ
∗
1,i(G

∗
1,i), b

∗
1,i)i∈[I∗] : return 0

8: if (ipk∗0,i, ϕ
∗
0,i(canon(G

∗
0,i)), |G∗

0,i|, b∗0,i)i∈[I∗]


= (ipk∗1,i, ϕ
∗
1,i(canon(G

∗
1,i)), |G∗

1,i|, b∗1,i)i∈[I∗] : return 0

9: π
∗ ← show(usk∗u∗

b
, (ipk∗b,i, G

∗
b,i, σ

∗
b,i, ϕ

∗
b,i, b

∗
b,i)i∈[I∗],m

∗
)

10: if π
∗
= ⊥ : return 0

11: b
∗ ← A(π

∗
;Oobt,Oobt′ ,Oshow); return (b

∗
= b)

Figure 7. Unforgeability and anonymity of LDVC. Highlighted parts are
only evaluated in the weak anonymity game.

can combine multiple RDF graphs while hiding the URIs
in the graphs, enabling the use cases shown in Figure 1.

Note that the selectively disclosed graph, passed from
the user to the verifier, can be different from the original
issued graph by the issuer, that is, some of the triples in
the graph might be removed or some of the terms in the
triples might be replaced by masks. These redactions can
differ the result of canonicalisation, that is, the order of the
canonicalised RDF triples by the verifier can be different
from that of the issuer, leading to verification failure. To
address this problem, in our construction, we let the user
calculate a map ψ between (m̃�)� at verification (verify)
and (m�)� at issuance (sign or issue), which is delivered
to the verifier so that the verifier can reproduce the same
attribute order as at the time of issuance.

Figure 8 shows our LDVC construction LDVCAC using
AC as its building block.

flatten is a function that takes a sequence �G =
((s1, p1, o1), (s2, p2, o2), . . .) of triples as input to obtain
a flat sequence (m�)� = (s1, p1, o1, s2, p2, o2, . . .).

mapGen is a function that takes sequences (xi)
I
i=1 and

(yj)
J
j=1 as input to output a map ψ : [I]→ [J ] such that

xi = yψ(i) is satisfied.

reorder uses ψ to reconstruct a sequence (yj)
J
j=1 from

(xi)
I
i=1, where the missing elements are filled with the

empty set ∅.
Masks X1, X2, . . . specified by ϕ are used in the

computation of the equivalence proof indices E . The at-
tribute values assigned to the same mask are shown to be
equivalent by a zero-knowledge proof of AC.
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prmGen(1λ, L)

1: return prm← AC.prmGen(1λ, 3L)

ikGen(prm)

1: return (isk, ipk)← AC.ikGen(prm)

uskGen(prm)

1: return usk← AC.uskGen(prm)

sign(isk, G)

1: (m�)� ← flatten(canon(G))

2: σ ← AC.sign(isk, (m�)�)

3: return σ

sigVf(ipk, G, σ)

1: (m�)� ← flatten(canon(G))

2: b← AC.sigVf(ipk, (m�)�, σ)

3: return b

〈obtain(usk, ipk, G), issue(isk, G)〉
obtain(usk, ipk, G) issue(isk, G)

(m�)� ← flatten(canon(G)) (m�)� ← flatten(canon(G))

σ ← AC.obtain(usk, ipk, (m�)�) AC.issue(isk, (m�)�)→ b

return σ return b

show(usk, (ipki, Gi, σi, ϕi, bi)i∈[I],m)

1: for i ∈ [I] :

2: (mi,�)� ← flatten(canon(Gi)); Ji ← |Gi|
3: (m̃i,�)� ← flatten(ϕi(canon(Gi)))

4: for m̃i,� ∈ (m̃i,�)� :

5: if m̃i,� ∈ X : Eq[m̃i,�]← Eq[m̃i,�] ∪ {(i, �)}
6: elseif m̃i,� 
= ⊥ : Di ← Di ∪ {�}
7: ψi ← mapGen(canon(ϕi(Gi)), ϕi(canon(Gi)))

8: E ← {Eq[X] : X ∈ X}
9: m̃← (((m̃i,�)�, ψi, Ji)i∈[I], E,m)

10: π̃ ← AC.show(usk, (ipki, (mi,�)�, σi,Di, bi)i∈[I], E, m̃)

11: if π̃ = ⊥ : return ⊥
12: return π ← (π̃, (ψi, Ji)i∈[I])

verify((ipki, G
′
i, bi)i∈[I],m, π)

1: (π̃, (ψi, Ji)i∈[I])← π

2: for i ∈ [I] :

3: (m̃i,�)� ← flatten(reorder(canon(G′
i), ψi, Ji))

4: (m
′
i,�)� ← (m̃i,�)�

5: for m̃i,� ∈ (m̃i,�)� :

6: if m̃i,� ∈ X :

7: Eq[m̃i,�]← Eq[m̃i,�] ∪ {(i, �)}; m
′
i,� ← ⊥

8: E ← {Eq[X] : X ∈ X}
9: m̃← (((m̃i,�)�, ψi, Ji)i∈[I], E,m)

10: return b← AC.verify((ipki, (m
′
i,�)�, bi)i∈[I], E, m̃, π̃)

flatten( �G)

1: for j ∈ [|�G|] :
2: if �G[j] = ∅ : (m3(j−1)+1,m3(j−1)+2,m3(j−1)+3)← (⊥,⊥,⊥)
3: else : (m3(j−1)+1,m3(j−1)+2,m3(j−1)+3)← �G[j]

4: return (m�)�∈[3|�G|]

mapGen((xi)
I
i=1, (yj)

J
j=1)

1: for (i, j) ∈ [I]× [J] :

2: if xi = yj : ψ(i)← j

3: return ψ

reorder((xi)
I
i=1, ψ, J)

1: for j ∈ [J] : yj ← ∅
2: for i ∈ [I] : yψ(i) ← xi

3: return (yj)
J
j=1

Figure 8. Generic construction LDVCAC of Linked-Data based Verifiable Credential

Eq is a dictionary-like data structure that maps a mask
X ∈ X to a set of (i, �)’s, each of which corresponds to
an attribute mi,� and these mi,�’s are masked by X in
the derived graph G′. For example, if we have Eq[X1] =
{(1, 2), (2, 3)} then both m1,2 in G′1 and m2,3 in G′2 have
the mask X1 as their values. Note that {Eq[X] : X ∈
X} = {Eq[X1],Eq[X2], . . .}, where each Eq[Xi] is a set
of (i, �)’s masked by Xi’s.

4.2. Security

Theorem 1. LDVCAC is unforgeable if AC is unforgeable.

Proof. Assume that we have a PPT adversary A against
the unforgeability of LDVCAC. We will construct an ad-
versary B that exploits A to break the unforgeability of
AC. Since we assume AC to be unforgeable, showing the
following relation is sufficient to conclude this proof.

Pr
[
ExpufLDVCAC

(λ,L,A) = 1
]
≤ Pr

[
ExpufAC(λ,L,B) = 1

]

(1)

To show how to construct B that meets Eq. (1), we define
consecutive games described in Figure 11.

Game G0. The initial game G0(λ,L,A) is equivalent to

ExpufLDVCAC
(λ,L,A). Therefore, we have the following.

Pr
[
ExpufLDVCAC

(λ,L,A) = 1
]
= Pr[G0(λ,L,A) = 1]

Game G1. We introduce three variables AC.CREDu,
AC.ATTR, and AC.PRES to record some values during
the processing of Oobtiss, Oiss, Osign, and Oshow.

With the processing added to line 13 in Oshow, the tu-
ple (ipki, (mi,�)�, σi, bi) will be overwritten with the val-
ues recorded in AC.CREDu[cidi]. Note that ipki, σi, and
bi are the same in both AC.CREDu[cid] and CREDu[cid].
Furthermore, we see that (mi,�)� is also generated as
(mi,�)� = flatten(canon(G)) in the lines 1 of Oobtiss,
which is completely the same as the way in Oshow. There-
fore, these additional operations will not affect the game’s
output.

Although we introduce a variable m′i,� on the line 15
of Oshow, this does not affect the game output.

In lines 16 and 17 of Oshow, we let the oracle return
⊥ when E satisfies certain conditions, but note that these
conditions can never be true if (ϕi)i∈[I] are correct reveal
functions. Since the validity of (ϕi)i∈[I] is guaranteed on
the line 1 ofOshow, these additional processes do not affect
the game output.

From the above, we have Pr[G0(λ,L,A) = 1] =
Pr[G1(λ,L,A) = 1].

Game G2. We replace the game output with four
additional variables b∗∗1 , b∗∗2 , b∗∗3 , and b∗∗4 . We will
show that

∧
b∗i implies

∧
b∗∗i , from which we have

Pr[G1(λ,L,A) = 1] ≤ Pr[G2(λ,L,A) = 1].
We can see that b∗1 and b∗3 are equivalent to b∗∗1 and

b∗∗3 , respectively.
Next, we show that b∗2 = 1 implies b∗∗2 = 1. Assume

b∗∗2 = 0, namely, ((ipk∗i , (m
′∗
i,�)�, b

∗
i )i∈[I∗], E∗, m̃∗) ∈

AC.PRES. Then ((m̃∗i,�)�)i∈[I∗] in m̃∗ should have been
computed as (m̃∗i,�)� ← flatten(ϕi(canon(Gi))) in line 5
of Oshow. On the other hand, from the line 7 of G2, we
also have (m̃∗i,�)� = flatten(reorder(canon(G′∗i ), ψ

∗
i , J
∗
i )),
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so that we can say flatten(ϕi(canon(Gi))) =
flatten(reorder(canon(G′∗i ), ψ

∗
i , J
∗
i )). Here, by the

definition of flatten, we have ϕi(canon(Gi)) =
reorder(canon(G′∗i ), ψ

∗
i , J
∗
i ). Furthermore, from the

definitions of ϕi, canon, and reorder, we have
ϕi(Gi) = G′∗i . Immediately after adding the tuple
((ipk∗i , (m

′∗
i,�)�, b

∗
i )i∈[I∗], E∗, m̃∗) to AC.PRES on line 20

of Oshow, PRES should get ((ipk∗i , ϕi(Gi), b
∗
i )i∈[I∗],m

∗)
in line 23. Since ϕi(Gi) = G′∗i holds here, we can say
that b∗2 = 0 and b∗2 = 1⇒ b∗∗2 = 1 as desired.

We can also show that b∗4 = 1 implies b∗∗4 =
1. Assume b∗∗4 = 0. Then there exist some
i∗ ∈ [I∗] and some (m�)� ∈ AC.ATTR such that
(m′∗i∗,�)� ⊆ (m�)�. For each (m′∗i∗,�)� and (m�)�, there
exist G′∗i∗ = {(m̃∗i∗,j , m̃∗i∗,j+1, m̃

∗
i∗,j+2)}j and G =

{(mj ,mj+1,mj+2)}j ∈ ATTR, respectively. We can
check G′∗i∗ � G, which implies b∗4 = 0 as desired.

Adversary B. Figure 12 shows the description of the
adversary B and its experiment ExpufAC(λ,L,B). We

can see that the output of ExpufAC(λ,L,B) is equiva-
lently generated to the output of G2. Hence, we have

Pr[G2(λ,L,A) = 1] = Pr
[
ExpufAC(λ,L,B) = 1

]

Putting all this together, we have

Pr
[
ExpufLDVCAC

(λ,L,A) = 1
]
≤ Pr

[
ExpufAC(λ,L,B) = 1

]
.

Since the right-hand side is negligible by assumption, the
left-hand side is also negligible.

Theorem 2. LDVCAC is weakly anonymous if AC is
anonymous.

Proof. Assume that we have a PPT adversary A against
the weak anonymity of LDVCAC. We will construct an
adversary B that exploits A to break the anonymity of AC.
Since we assume AC is anonymous, showing the following
relation is sufficient to conclude this proof:

Pr
[
ExpwanLDVCAC

(λ,L,A) = 1
] ≤ Pr[ExpanAC(λ,L,B) = 1]

(2)

To show how to construct B that meets Eq. (2), we define
consecutive games described in Figure 13.

Game G0. The initial game G0(λ,L,A) is equivalent to
ExpwanLDVCAC

(λ,L,A). Therefore, we have the following.

Pr
[
ExpwanLDVCAC

(λ,L,A) = 1
]
= Pr[G0(λ,L,A) = 1]

Game G1. We introduce a variable AC.CREDu to record
the credentials that the honest user obtains through Oobt

and O′obt. Similarly to the proof of Theorem 1, we have
Pr[G0(λ,L,A) = 1] = Pr[G1(λ,L,A) = 1].

Game G2. We define b̄ = 1 ⊕ b, as the inverse of bit
b, and additional variables (m∗̄

b,i,�
)�, J

∗̄
b,i

, (m̃∗̄
b,i,�

)�, D∗̄b,i,
ψ∗̄
b,i

, E ∗̄
b

and m̃∗̄
b

in the similar fashion as the ones indexed

by b. These additional variables do not affect the output
of the game, so that we have Pr[G1(λ,L,A) = 1] =
Pr[G2(λ,L,A) = 1].

Game G3. Here we can see that both ψ∗0,i = ψ∗1,i and
J∗0,i = J∗1,i hold for any i ∈ [I∗] because of the checking
in line 7 of the game. Note that this guarantee holds
in the weak anonymity game, which implies the reason
why we cannot prove (full) anonymity using the same
argument here. In addition, we can also check that E ∗̄

b
and m̃∗̄

b
are the same as their counterparts related to b.

To sum up, we can omit b and b̄ from these values
without affecting the output of the game, which results
in Pr[G2(λ,L,A) = 1] = Pr[G3(λ,L,A) = 1].

Game G4. With the loop starting from line 31, the tuples
(ipk∗b′,i, (m

∗
b′,i,�)�, σ

∗
b′,i, b

∗
b′,i) will be overwritten with the

values recorded in AC.CREDu∗
b′
[cid∗b′,i] for b′ ∈ {0, 1}.

Similarly to the proof of Theorem 1, these additional
operations do not affect the output of the game. Hence,
Pr[G3(λ,L,A) = 1] = Pr[G4(λ,L,A) = 1] holds.

Adversary B. Figure 14 shows the description of the
adversary B and its experiment ExpanAC(λ,L,B). We
can see that the output of ExpanAC(λ,L,B) is equiva-
lently generated to the output of G4. Hence, we have
Pr[G4(λ,L,A) = 1] = Pr[ExpanAC(λ,L,B) = 1]

Putting all this together, we have
Pr

[
ExpwanLDVCAC

(λ,L,A) = 1
] ≤ Pr[ExpanAC(λ,L,B) = 1].

Since the right-hand side is negligible by assumption, the
left-hand side is also negligible.

4.3. Impact of Weak Anonymity in Practice

Our construction leaks the size and the canonicalised
form of the original graph, due to J and ψ in the proof
π, respectively. Weak anonymity guarantees that nothing
further will be leaked by our construction.

The leaked size of the graph helps adversaries guess
which credential is included in the presented proof. For
example, assume that a user has two credentials that
include G1 and G2, respectively, where |G1| �= |G2| and
G1 ∩ G2 �= ∅. If the user shows one of these credentials
that partially discloses an intersection G1 ∩ G2, anyone
can determine which credential is presented by the leaked
size |Gi|, even though the disclosed attributes G1 ∩ G2

themselves do not leak any information to identify the
original credential. A simple workaround is to add dummy
RDF triples to each graph when issuing credentials so that
all graphs are the same size.

Similarly, the leaked canonicalised form of the original
graph can also be exploited to identify the credentials
included in the presentation. Furthermore, in some spe-
cific situations, an adversary can even guess unrevealed
attribute values from revealed attributes with a leaked
canonicalised form. For example, let us assume that a
user has the issued credential, including an RDF graph
G, which is canonicalised to get the following ordered
set:

canon(G1) = ((John, children, Albert)),

(John, children, Alice),

(John, children, Allie))

Even if the user selectively discloses only the first
and third triples of canon(G1), anyone can easily
guess that the unrevealed second triple must be like
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(John, children, Al...), because the canonicalisa-
tion algorithm used here is just a simple sorting based on
lexicographic order.

We can prevent this type of attack by using random
permutation to shuffle the order of a canonicalised ordered
set. This random permutation is contained in the credential
that is to be shared between the issuer and the user,
while the user does not have to show the permutation
to the verifier because it can be implicitly embedded in
the map ψ. However, such a workaround cannot prevent
an adversary from guessing which credential is used in
the presentation. Therefore, we cannot yet have a fully
anonymous LDVC scheme at the moment.

We leave it as an open problem to make a full anony-
mous construction of LDVC instead of the above ad hoc
workarounds.

5. Performance Evaluation

We extended MATTR’s open source implementa-
tion [32] of the LDP-BBS+ scheme [31] to provide a
prototype4 and a demo application5 running in a Web
browser, implemented in TypeScript, WebAssembly and
Rust.

The anonymous credential scheme we used as a build-
ing block is the same as LDP-BBS +, that is, the BBS+
signature scheme [1], [9] used with the BLS 12-381
curve [6], where the size of the private key, public key,
signature σ and the non-interactive zero-knowledge proof
π̃ are 32 bytes, 96 bytes, 112 bytes and 368 + 32n bytes
(where n is the number of undisclosed RDF terms), re-
spectively. We ran the above prototype on Google Chrome
with an Intel i7-10750H @ 2.60GHz (6 cores, 12 threads)
and 32GB RAM and measured its performance.

Figure 9 shows the processing time of sign and sigVf
for the number of RDF terms contained in the Linked Data
to be signed, where “sign (AC)” and “sigVf (AC)” indicate
only the time for the anonymous credential computation,
that is, BBS + signature generation and verification. Sim-
ilarly, the processing times of show and verify for the
number of unrevealed RDF terms during the verifiable
presentation are shown in Figure 10. Here, the number
of revealed terms is fixed at 30 in all cases because the
dominant factor is the number of unrevealed terms rather
than revealed terms.

It can be seen that most of the processing time is
spent on the underlying anonymous credential, that is, the
BBS + signature scheme. The processing time increases
in proportion to the number of RDF terms, since both
our construction and the underlying BBS+ scheme do not
use any accumulator in order to implement the proof of
equality that is necessary to link multiple data in the zero-
knowledge fashion in our proposed use case. When around
200 out of 230 RDF terms are unrevealed, the processing
time required for signing, signature verification, showing,
and its verification can all be performed within one sec-
ond, which shows that a user using Google Chrome takes
at most one second to selectively disclose 50 attributes
from the Linked-Data based verifiable credentials with
about 60 attributes in total.

4. https://github.com/zkp-ld/jsonld-signatures-bbs

5. https://playground.zkp-ld.org/

Figure 9. Processing time of sign / sigVf

Figure 10. Processing time of show / verify

Note that the issuance of bound credentials, that is,
issue and obtain, has not yet been implemented and should
be treated as future work.

6. Conclusion and Future Work

In this paper, we present a construction of Linked-
Data based verifiable credentials, introduce its security
model handling RDF graphs, and prove the security and
privacy of our construction using the model. Additionally,
we implement a prototype and a demo application to eval-
uate the practicality of our construction. Our performance
evaluation shows that a user using Google Chrome takes
at most one second to selectively disclose 50 attributes
from the Linked-Data based verifiable credentials with 60
attributes in total.

Our current construction satisfies a weaker notion of
anonymity. Fully anonymous constructions are currently
declared to be an open problem. Future work also in-
cludes adding features such as revocation, delegation,
range proofs, pseudonyms, and anonymous issuer [4]
to our model and configuration. As with existing graph
signatures [33], [42] and redactable signatures [35], it is
also desirable to achieve constant proof sizes and ver-
ification times independent of the number of attributes.
Furthermore, in this paper, we have processed Linked
Data in a procedural way using canon, reorder and other
utility functions. However, it is worth considering a more
algebraic and/or order-agnostic approach, such as the set
commitment scheme in [20] or the Monipoly scheme [41],
for the sake of constructing fully anonymous schemes.
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G0, G1, G2

1: prm← AC.prmGen(1λ, 3L)

2: (isk∗, ipk∗)← AC.ikGen(prm)

3: for u ∈ [U ] : usk∗u ← AC.uskGen(prm)

4: ((ipk∗i , G
′∗
i , b∗i )i∈[I∗],m

∗
, π

∗
)

← A(prm, ipk∗;Oobtiss,Oiss,Osign,Oshow)

5: (π̃
∗
, (ψ

∗
i , J

∗
i )i∈[I∗])← π

∗

6: for i ∈ [I
∗
] :

7: (m̃
∗
i,�)� ← flatten(reorder(canon(G′∗

i ), ψ
∗
i , J

∗
i ))

8: (m
′∗
i,�)� ← (m̃

∗
i,�)�

9: for m̃
∗
i,� ∈ (m̃

∗
i,�)� :

10: if m̃
∗
i,� ∈ X :

11: Eq[m̃∗
i,�]← Eq[m̃∗

i,�] ∪ {(i, �)}; m
′∗
i,� ← ⊥

12: E∗ ← {Eq[X] : X ∈ X}
13: m̃∗ ← (((m̃

∗
i,�)�, ψ

∗
i , J

∗
i )i∈[I∗], E∗,m∗

)

14: b
∗
1 ← AC.verify((ipk∗i , (m

′∗
i,�)�, b

∗
i )i∈[I∗], E∗, m̃∗

, π̃
∗
)

15: b∗∗1 ← AC.verify((ipk∗i , (m
′∗
i,�)�, b

∗
i )i∈[I∗], E∗, m̃∗, π̃∗)(2)

16: b
∗
2 ← [((ipk∗i , G

′∗
i , b∗i )i∈[I∗],m

∗
) /∈ PRES]

17: b∗∗2 ← [((ipk∗i , (m
′∗
i,�)�, b

∗
i )i∈[I∗], E∗, m̃∗) /∈ AC.PRES](2)

18: b
∗
3 ← [ipk∗ ∈ {ipk∗i }i∈[I∗]]; b

∗
4 ← 


19: b∗∗3 ← [ipk∗ ∈ {ipk∗i }i∈[I∗]]; b∗∗4 ← 
(2)

20: for i
∗ ∈ {i ∈ [I

∗
] : ipk∗i = ipk∗} :

21: b
∗
4 ← b

∗
4 ∧ [∀G ∈ ATTR. G′∗

i∗ 
� G]

22: b∗∗4 ← b∗∗4 ∧ [∀(m�)� ∈ AC.ATTR. (m′∗
i∗,�)� 
⊆ (m�)�]

(2)

23: return b∗1 ∧ b∗2 ∧ b∗3 ∧ b∗4
(0,1)

24: return b∗∗1 ∧ b∗∗2 ∧ b∗∗3 ∧ b∗∗4
(2)

Oshow(u, (cidi, ϕi)i∈[I],m)

1: if (ϕi)i∈[I] is incorrect : return ⊥
2: for i ∈ [I] :

3: (ipki, Gi, σi, bi)← CREDu[cidi]; G
′
i ← ϕi(Gi)

4: (mi,�)� ← flatten(canon(Gi)); Ji ← |Gi|
5: (m̃i,�)� ← flatten(ϕi(canon(Gi)))

6: for m̃i,� ∈ (m̃i,�)� :

7: if m̃i,� ∈ X : Eq[m̃i,�]← Eq[m̃i,�] ∪ {(i, �)}
8: elseif m̃i,� 
= ⊥ : Di ← Di ∪ {�}
9: ψi ← mapGen(canon(ϕi(Gi)), ϕi(canon(Gi)))

10: E ← {Eq[X] : X ∈ X}
11: m̃← (((m̃i,�)�, ψi, Ji)i∈[I], E,m)

12: for i ∈ [I] :
(1,2)

13: (ipki, (mi,�)�, σi, bi)← AC.CREDu[cidi]
(1,2)

14: for mi,� ∈ (mi,�)� :
(1,2)

15: if � ∈ Di : m′
i,� ← mi,� else : m′

i,� ← ⊥(1,2)

16: if ∃(i, �), (i′, �′) ∈ E ∈ E. [m(i,�) 
= m(i′,�′)] : return ⊥(1,2)

17: if ∃(i, �) ∈ E ∈ E. [� ∈ Di] : return ⊥(1,2)

18: π̃ ← AC.show(usk∗u, (ipki, (mi,�)�, σi,Di, bi)i∈[I], E, m̃)

19: if π̃ = ⊥ : return ⊥
20: AC.PRES← AC.PRES ∪ {((ipki, (m′

i,�)�, bi)i∈[I], E, m̃)}(1,2)
21: π ← (π̃, (ψi, Ji)i∈[I])

22: if π = ⊥ : return ⊥
23: PRES← PRES ∪ {((ipki, G′

i, bi)i∈[I],m)}
24: return π

Oobtiss(u,G, b)

1: (m�)� ← flatten(canon(G))

2: if b : 〈σ, ·〉 ← 〈AC.obtain(usk∗u, ipk∗, (m�)�),

AC.issue(isk∗, (m�)�)〉
3: else : σ ← AC.sign(isk∗, (m�)�)

4: if σ = ⊥ : return ⊥
5: cid←$ {0, 1}∗; CREDu[cid]← (ipk∗, G, σ, b)

6: AC.CREDu[cid]← (ipk∗, (m�)�, σ, b)
(1,2)

7: return cid

Oiss(G)

1: (m�)� ← flatten(canon(G))

2: 〈·, b〉 ← 〈A,AC.issue(isk∗, (m�)�)〉
3: if b 
= ⊥ :

4: ATTR← ATTR ∪ {G}
5: AC.ATTR← AC.ATTR ∪ {(m�)�}(1,2)

Osign(G)

1: (m�)� ← flatten(canon(G))

2: σ ← AC.sign(isk∗, (m�)�)

3: ATTR← ATTR ∪ {G}
4: AC.ATTR← AC.ATTR ∪ {(m�)�}(1,2)
5: return σ

Figure 11. Unforgeability games of LDVCAC. Highlighted codes with superscript i ∈ {0, 1, 2} are evaluated only in game Gi.
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ExpufAC(λ, 3L,B)
1: prm← AC.prmGen(1λ, 3L)

2: (isk∗, ipk∗)← AC.ikGen(prm)

3: for u ∈ [U ] : usk∗u ← AC.uskGen(prm)

4: ((ipk∗i , (m
′∗
i,�)�, b

∗
i )i∈[I∗], E∗, m̃∗

, π̃
∗
)

← B(prm, ipk∗;OAC.obtiss,OAC.iss,OAC.sign,OAC.show)

1: ((ipk∗i , G
′∗
i , b∗i )i∈[I∗],m

∗
, π

∗
)

← A(prm, ipk∗;Oobtiss,Oiss,Osign,Oshow)

2: (π̃
∗
, (ψ

∗
i , J

∗
i )i∈[I∗]) ← π

∗

3: for i ∈ [I
∗
] :

4: (m̃
∗
i,�)� ← flatten(reorder(canon(G′∗

i ), ψ
∗
i , J

∗
i ))

5: (m
′∗
i,�)� ← (m̃

∗
i,�)�

6: for m̃
∗
i,� ∈ (m̃

∗
i,�)� :

7: if m̃
∗
i,� ∈ X :

8: Eq[m̃∗
i,�] ← Eq[m̃∗

i,�] ∪ {(i, �)}; m
′∗
i,� ← ⊥

9: E∗ ← {Eq[X] : X ∈ X}
10: m̃∗ ← (((m̃

∗
i,�)�, ψ

∗
i , J

∗
i )i∈[I∗], E

∗
,m∗

)

11: return ((ipk∗i , (m
′∗
i,�)�, b

∗
i )i∈[I∗], E

∗
, m̃∗

, π̃
∗
)

5: b
∗∗
1 ← AC.verify((ipk∗i , (m

′∗
i,�)�, b

∗
i )i∈[I∗], E∗, m̃∗

, π̃
∗
)

6: b
∗∗
2 ← [((ipk∗i , (m

′∗
i,�)�, b

∗
i )i∈[I∗], E∗, m̃∗

) /∈ AC.PRES]

7: b
∗∗
3 ← [ipk∗ ∈ {ipk∗i }i∈[I∗]]; b

∗∗
4 ← 


8: for i
∗ ∈ {i ∈ [I

∗
] : ipk∗i = ipk∗} :

9: b
∗∗
4 ← b

∗∗
4 ∧ [∀(m�)� ∈ AC.ATTR. (m′∗

i∗,�)� 
⊆ (m�)�]

10: return b
∗∗
1 ∧ b

∗∗
2 ∧ b

∗∗
3 ∧ b

∗∗
4

Oshow(u, (cidi, ϕi)i∈[I],m) // given to A by B
1: if (ϕi)i∈[I] is incorrect : return ⊥
2: for i ∈ [I] :

3: (ipki, Gi, σi, bi)← CREDu[cidi]; G
′
i ← ϕi(Gi)

4: (mi,�)� ← flatten(canon(Gi)); Ji ← |Gi|
5: (m̃i,�)� ← flatten(ϕi(canon(Gi)))

6: for m̃i,� ∈ (m̃i,�)� :

7: if m̃i,� ∈ X : Eq[m̃i,�]← Eq[m̃i,�] ∪ {(i, �)}
8: elseif m̃i,� 
= ⊥ : Di ← Di ∪ {�}
9: ψi ← mapGen(canon(ϕi(Gi)), ϕi(canon(Gi)))

10: E ← {Eq[X] : X ∈ X}
11: m̃← (((m̃i,�)�, ψi, Ji)i∈[I], E,m)

12: π̃ ← OAC.show(u, (cidi,Di)i∈[I], E,m) // given to B
1: for i ∈ [I] :

2: (ipki, (mi,�)�, σi, bi) ← AC.CREDu[cidi]

3: for mi,� ∈ (mi,�)� :

4: if � ∈ Di : m
′
i,� ← mi,� else : m

′
i,� ← ⊥

5: if ∃(i, �), (i
′
, �

′
) ∈ E ∈ E. [m(i,�) 	= m

(i′,�′)] : return ⊥
6: if ∃(i, �) ∈ E ∈ E. [� ∈ Di] : return ⊥
7: π̃ ← AC.show(usk∗u, (ipki, (mi,�)�, σi,Di, bi)i∈[I], E, m̃)

8: if π̃ = ⊥ : return ⊥
9: AC.PRES ← AC.PRES ∪ {((ipki, (m′

i,�)�, bi)i∈[I], E, m̃)}
10: return π̃

13: π ← (π̃, (ψi, Ji)i∈[I])

14: if π = ⊥ : return ⊥
15: PRES← PRES ∪ {((ipki, G′

i, bi)i∈[I],m)}
16: return π

Oobtiss(u,G, b) // given to A by B
1: (m�)� ← flatten(canon(G))

2: cid← OAC.obtiss(u, (m�)�, b) // given to B
1: if b : 〈σ, ·〉 ← 〈AC.obtain(usk∗u, ipk∗, (m�)�),

AC.issue(isk∗, (m�)�)〉
2: else : σ ← AC.sign(isk∗, (m�)�)

3: if σ = ⊥ : return ⊥
4: cid ←$ {0, 1}∗

5: AC.CREDu[cid] ← (ipk∗, (m�)�, σ, b)

6: return cid

3: CREDu[cid]← (ipk∗, G, σ, b); return cid

Oiss(G) // given to A by B
1: (m�)� ← flatten(canon(G))

2: OAC.iss((m�)�) // given to B
1: 〈·, b〉 ← 〈A, AC.issue(isk∗, (m�)�)〉
2: if b 	= ⊥ :

3: AC.ATTR ← AC.ATTR ∪ {(m�)�}

3: if b 
= ⊥ :

4: ATTR← ATTR ∪ {G}

Osign(G) // given to A by B
1: (m�)� ← flatten(canon(G))

2: σ ← OAC.sign((m�)�) // given to B
1: σ ← AC.sign(isk∗, (m�)�)

2: AC.ATTR ← AC.ATTR ∪ {(m�)�}
3: return σ

3: ATTR← ATTR ∪ {G}
4: return σ

Figure 12. Adversary B against the unforgeability of LDVCAC.
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G0,G1,G2,G3

1: b←$ {0, 1}; prm← AC.prmGen(1λ, 3L)

2: for u ∈ [U ] : usk∗u ← AC.uskGen(prm)

3: ((u
∗
0 , cid

∗
0,i, ϕ

∗
0,i)i∈[I∗], (u

∗
1 , cid

∗
1,i, ϕ

∗
1,i)i∈[I∗],m

∗
)

← A(prm;Oobt,Oobt′ ,Oshow)

4: for i ∈ [I
∗
] :

5: (ipk∗0,i, G
∗
0,i, σ

∗
0,i, b

∗
0,i)← CREDu∗

0
[cid∗0,i]

6: (ipk∗1,i, G
∗
1,i, σ

∗
1,i, b

∗
1,i)← CREDu∗

1
[cid∗1,i]

7: if (ipk∗0,i, ϕ
∗
0,i(canon(G

∗
0,i)), |G∗

0,i|, b∗0,i)i∈[I∗]


= (ipk∗1,i, ϕ
∗
1,i(canon(G

∗
1,i)), |G∗

1,i|, b∗1,i)i∈[I∗] : return 0

8: for i ∈ [I
∗
] :

9: (m
∗
b,i,�)� ← flatten(canon(G∗

b,i)); J
∗
b,i ← |G∗

b,i|
10: (m̃

∗
b,i,�)� ← flatten(ϕ∗

b,i(canon(G
∗
b,i)))

11: for m̃
∗
b,i,� ∈ (m̃

∗
b,i,�)� :

12: if m̃
∗
b,i,� ∈ X : Eq[m̃∗

b,i,�]← Eq[m̃∗
b,i,�] ∪ {(i, �)}

13: elseif m̃
∗
b,i,� 
= ⊥ : D∗

b,i ← D∗
b,i ∪ {�}

14: ψ
∗
b,i ← mapGen(canon(ϕ∗

b,i(G
∗
b,i)), ϕ

∗
b,i(canon(G

∗
b,i)))

15: b̄← b⊕ 1
(2,3,4)

16: for i ∈ [I∗] :(2,3,4)

17: (m∗̄
b,i,�

)� ← flatten(canon(G∗̄
b,i

)); J ∗̄
b,i
← |G∗̄

b,i
|(2,3,4)

18: (m̃∗̄
b,i,�

)� ← flatten(ϕ∗̄
b,i

(canon(G∗̄
b,i

)))
(2,3,4)

19: for m̃∗̄
b,i,�

∈ (m̃∗̄
b,i,�

)� :
(2,3,4)

20: if m̃∗̄
b,i,�

∈ X : Eq[m̃∗̄
b,i,�

]← Eq[m̃∗̄
b,i,�

] ∪ {(i, �)}(2,3,4)

21: elseif m̃∗̄
b,i,�


= ⊥ : D∗̄
b,i
← D∗̄

b,i
∪ {�}(2,3,4)

22: ψ∗̄
b,i
← mapGen(canon(ϕ∗̄

b,i
(G∗̄

b,i
)), ϕ∗̄

b,i
(canon(G∗̄

b,i
)))

(2,3,4)

23: if (ψ∗
0,i, J

∗
0,i)i 
= (ψ∗

1,i, J
∗
1,i)i : return 0

(3,4)

24: else : (ψ∗
i , J

∗
i )← (ψ∗

0,i, J
∗
0,i)

(3,4)

25: E∗b ← {Eq[X] : X ∈ X}
26: E ∗̄

b
← {Eq[X] : X ∈ X}(2,3,4)

27: m̃∗
b ← (((m̃

∗
b,i,�)�, ψ

∗
b,i, J

∗
b,i)i∈[I∗], E∗b ,m∗

)

28: m̃∗̄
b
← (((m̃∗̄

b,i,�
)�, ψ

∗̄
b,i

, J ∗̄
b,i

)i∈[I∗], E ∗̄b ,m∗)(2,3,4)

29: if (E∗0 , m̃∗
0) 
= (E∗1 , m̃∗

1) : return 0
(3,4)

30: else : (E∗, m̃∗)← (E∗0 , m̃∗
0)

(3,4)

31: for i ∈ [I∗] :(4)

32: (ipk∗0,i, (m
∗
0,i,�)�, σ

∗
0,i, b

∗
0,i)← AC.CREDu∗

0
[cid∗0,i]

(4)

33: (ipk∗1,i, (m
∗
1,i,�)�, σ

∗
1,i, b

∗
1,i)← AC.CREDu∗

1
[cid∗1,i]

(4)

34: if (ipk∗0,i, (m
∗
0,i,�)�∈D∗

0,i
, b∗0,i)i∈[I∗]

(4)


= (ipk∗1,i, (m
∗
1,i,�)�∈D∗

1,i
, b∗1,i)i∈[I∗] : return 0

(4)

35: π̃
∗ ← AC.show(usk∗u∗

b
, (ipk∗b,i, (m

∗
b,i,�)�, σ

∗
b,i,D∗

b,i, b
∗
b,i)i∈[I∗],

E∗b , m̃∗
b
(0,1,2)E∗, m̃∗(3,4)

)

36: if π̃
∗
= ⊥ : return 0

37: π∗ ← (π̃∗, (ψ∗
b,i, J

∗
b,i)i∈[I∗])

(0,1,2)

38: π∗ ← (π̃∗, (ψ∗
i , J

∗
i )i∈[I∗])

(3,4)

39: b
∗ ← A(π

∗
;Oobt,Oobt′ ,Oshow); return (b

∗
= b)

Oobt(u, cid, ipk, G)

1: (m�)� ← flatten(canon(G))

2: 〈σ, ·〉 ← 〈AC.obtain(usk∗u, ipk, (m�)�),A〉
3: if σ = ⊥ : return ⊥
4: CREDu[cid]← (ipk, G, σ, 1)

5: AC.CREDu[cid]← (ipk, (m�)�, σ, 1)
(1,2,3,4)

Oobt′(u, cid, ipk, G, σ)

1: (m�)� ← flatten(canon(G))

2: if AC.sigVf(ipk, (m�)�, σ) = 0 : return ⊥
3: CREDu[cid]← (ipk, G, σ, 0)

4: AC.CREDu[cid]← (ipk, (m�)�, σ, 0)
(1,2,3,4)

Figure 13. Weak anonymity games of LDVC. Highlighted codes with
superscript i are evaluated only in game Gi. The description of Oshow

is same as Fig. 11 and omitted here.

ExpanAC(λ, 3L,B)
1: b←$ {0, 1}; prm← AC.prmGen(1λ, 3L)

2: for u ∈ [U ] : usk∗u ← AC.uskGen(prm)

3: ((u
∗
0 , cid

∗
0,i,D∗

0,i)i∈[I∗], (u
∗
1 , cid

∗
1,i,D∗

1,i)i∈[I∗], E∗, m̃∗
)

← B(prm;OAC.obt,OAC.obt′ ,OAC.show)

1: ((u
∗
0 , cid∗0,i, ϕ

∗
0,i)i∈[I∗], (u

∗
1 , cid∗1,i, ϕ

∗
1,i)i∈[I∗],m

∗
)

← A(prm;Oobt,Oobt′ ,Oshow)

2: for i ∈ [I
∗
] :

3: (ipk∗0,i, G
∗
0,i, σ

∗
0,i, b

∗
0,i) ← CREDu∗

0
[cid∗0,i]

4: (ipk∗1,i, G
∗
1,i, σ

∗
1,i, b

∗
1,i) ← CREDu∗

1
[cid∗1,i]

5: if (ipk∗0,i, ϕ
∗
0,i(canon(G

∗
0,i)), |G

∗
0,i|, b

∗
0,i)i∈[I∗]

	= (ipk∗1,i, ϕ
∗
1,i(canon(G

∗
1,i)), |G

∗
1,i|, b

∗
1,i)i∈[I∗] :

6: return 0

7: for b
′ ∈ {0, 1} :

8: for i ∈ [I
∗
] :

9: (m
∗
b′,i,�)� ← flatten(canon(G∗

b′,i)); J
∗
b′,i ← |G∗

b′,i|

10: (m̃
∗
b′,i,�)� ← flatten(ϕ∗

b′,i(canon(G
∗
b′,i)))

11: for m̃
∗
b′,i,� ∈ (m̃

∗
b′,i,�)� :

12: if m̃
∗
b′,i,� ∈ X : Eq[m̃∗

b′,i,�] ← Eq[m̃∗
b′,i,�] ∪ {(i, �)}

13: elseif m̃
∗
b′,i,� 	= ⊥ : D∗

b′,i ← D∗
b′,i ∪ {�}

14: ψ
∗
b′,i ← mapGen(canon(ϕ∗

b′,i(G
∗
b′,i)), ϕ

∗
b′,i(canon(G

∗
b′,i)))

15: if (ψ
∗
0,i, J

∗
0,i)i 	= (ψ

∗
1,i, J

∗
1,i)i : return 0

16: else : (ψ
∗
i , J

∗
i ) ← (ψ

∗
0,i, J

∗
0,i)

17: E∗
b′ ← {Eq[X] : X ∈ X}

18: m̃∗
b′ ← (((m̃

∗
b′,i,�)�, ψ

∗
b′,i, J

∗
b′,i)i∈[I∗], E

∗
b′ ,m

∗
)

19: if (E∗
0 , m̃∗

0) 	= (E∗
1 , m̃∗

1) : return 0

20: else : (E∗
, m̃∗

) ← (E∗
0 , m̃∗

0)

21: return ((u
∗
0 , cid∗0,i,D

∗
0,i)i∈[I∗],

(u
∗
1 , cid∗1,i,D

∗
1,i)i∈[I∗], E

∗
, m̃∗

)

4: for i ∈ [I
∗
] :

5: (ipk∗0,i, (m
∗
0,i,�)�, σ

∗
0,i, b

∗
0,i)← AC.CREDu∗

0
[cid∗0,i]

6: (ipk∗1,i, (m
∗
1,i,�)�, σ

∗
1,i, b

∗
1,i)← AC.CREDu∗

1
[cid∗1,i]

7: if (ipk∗0,i, (m
∗
0,i,�)�∈D∗

0,i
, b∗0,i)i∈[I∗]


= (ipk∗1,i, (m
∗
1,i,�)�∈D∗

1,i
, b∗1,i)i∈[I∗] : return 0

8: π̃
∗ ← AC.show(usk∗u∗

b
,

9: (ipk∗b,i, (m
∗
b,i,�)�, σ

∗
b,i,D∗

b,i, b
∗
b,i)i∈[I∗], E∗, m̃∗

)

10: b
∗ ← B(π̃∗;OAC.obt,OAC.obt′ ,OAC.show)

1: π
∗ ← (π̃

∗
, (ψ

∗
i , J

∗
i )i∈[I∗])

2: b
∗ ← A(π

∗
;Oobt,Oobt′ ,Oshow)

3: return b
∗

11: return (b
∗
= b)

Oobt(u, cid, ipk, G)

1: (m�)� ← flatten(canon(G))

2: OAC.obt(u, cid, ipk, (m�)�) // given to B
1: 〈σ, ·〉 ←

〈AC.obtain(usk∗u, ipk, (m�)�),A〉
2: if σ = ⊥ : return ⊥
3: AC.CREDu[cid] ← (ipk, (m�)�, σ, 1)

3: CREDu[cid]← (ipk, G, σ, 1)

Oobt′(u, cid, ipk, G, σ)

1: (m�)� ← flatten(canon(G))

2: OAC.obt′ (u, cid, ipk, (m�)�, σ) // given to B
1: if AC.sigVf(ipk, (m�)�, σ) = 0 : return ⊥
2: AC.CREDu[cid] ← (ipk, (m�)�, σ, 0)

3: CREDu[cid]← (ipk, G, σ, 0)

Figure 14. Adversary B against the anonymity of LDVCAC. The descrip-
tion of Oshow is same as Fig. 12 and omitted here.
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